Topic	Pattern Recognition
Activity	4.2
Level	Elementary

Directions: In each sequence below are numbers that create a pattern. Can you see it? Fill in the blanks to make each pattern correct, showing your work below each.

4. 1, 3, 5, 7, 9, ____, ____, ____

5. 12, 10, 8, 6, ____, ____,

10. 3, 8, 13, 18, ____, ___, ____

			Topic	Adding Algebraically		
Name:		Activity	2			
			Level	Intermediate		
DIRE	ECTIONS:	Solve the problems below. When you are finished, check your work with RoboArm.				
1.	was moved 2 was RoboArr	7° away from the point of origin. We know it 23° the second time we moved it. How far m moved the first time? t be moved 35° more to get to 46°. Where is				
2.		w?				
3.	many degree	cated at 33°. We need to get to 93°. How s do we need to move RoboArm to get to our	E S			
4.	Axis #3 was	at 15°. We moved it 45° more. At what	degree will	Axis #3 end up?		
5.	Axis #4 is located at 122°. We know it was moved 45° the second time we moved it. How many degrees was Axis #4 moved the first time?					
6.	Axis #1 is 1: Axis #1 loca	20° from the point of origin. It was moved 4 ted now?	3° more. A	t what degrees is		
7.		ppping point was at 82°. We know it was moved the second time?	ed 43° the f	irst time. How far		
8.		cated at 23°. We need to get to 80°. How fa ach our destination?	r do we have	e to move Axis #2		
9.		cated 120° from the point of origin It was m xis #1 now?	oved 180° ก	nore. What is the		
10.	of origin. Axi	oboArm was moved three times. The final loc is #3 was moved 23° the first time and 17° t ed the third time?				

Youth Touch

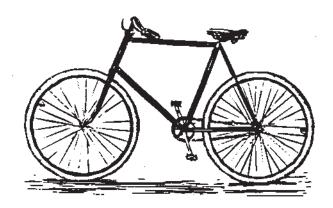
Goldenrod Research Corporation

Nan	ne:	Activity	2_			
		Level	Intermediate			
Dire	ctions: Use the HydrauLift to answer the questions below.					
1.	Look carefully at HydrauLift. How many circular-shaped pa List them here:	·				
2.	Locate the pistons on HydrauLift. How many are there?					
3,	Are all the pistons the same size or different sizes?					
4.	What shape is the piston?					
5.	How can you find the diameter of the piston?					
6.	How can you find the radius of the piston?					
7.	How can you find the circumference of the piston?					
8.	What information do you need to find the surface area of a piston?					
9.	What is the formula to find the surface area of a piston?					
10.	Find the radius and diameter of both pistons.					
	P1 radius = diameter = P2 radius = diameter =	=	· · · · · · · · · · · · · · · · · · ·			
11.	Now, using the information from above, find the surface ar	ea of each p	iston.			
	API =					
Ext	ra! What is the mass HydrauLift can raise with 10 pound Mass = Pressure x Surface Area of Piston					
	Mass = Mass =					
	Mass =	····	— OII EII (Z			

Topic

Area of a Circle

	•	•	.	Topic	Circumference	
lame:				Activity	2	
			 	Level	Intermediate	


CIRCUMFERENCE PROJECT PAGE

Position RoboArm so that the arm is fully extended and the gripper almost grazes the work surface. RoboArm can be placed in this position by moving Axis 3 up so that it is above parallel to the table, and moving Axis 2 down. Find the circumference of the circle that RoboArm would trace on the table or workspace if Axis 1 were rotated.

How would you determine the distance a gerbil would run on its exercise wheel in a day?

A bicycle tire has a diameter of 26 inches. Find the distance the bicycle will travel in 10 rotations of the tire in 16 rotations.

